Поиск в словарях
Искать во всех

Физический энциклопедический словарь - в эмиссионном

 

В эмиссионном

в эмиссионном
АСА для получения спектров испускания исследуемого в-ва отбирают представит. пробу, отражающую его состав, и вводят её в источник излучения (атомизатор). Здесь тв. и жидкие пробы испаряются, соединение диссоциирует и свободные атомы (ионы) переходят в возбуждённое состояние. Испускаемое ими излучение раскладывается в спектр и регистрируется (или наблюдается визуально) с помощью спектрального прибора.

Для возбуждения спектра в АСА используют разл. источники света и соответственно разл. способы введения в них образцов. Выбор источника зависит от конкретных условий анализа объекта. Тип источника и способ введения в него пробы составляют гл. содержание частных методик АСА. Первым искусств. источником света в АСА было пламя газовой горелки —

источник. весьма удобный для быстрого и точного определения мн. элементов. Темп-ра пламён горючих газов невысока (от 2100К для смеси водород — воздух до 4500К для смеси кислород — циан). С помощью фотометрии пламенной определяют ок. 70 элементов по их аналитич. линиям, а также по мол. полосам соединений, образующихся в пламёнах.

В эмиссионном АСА широко используются электрич. источники света. В электрич. дуге пост. тока между специально очищенными угольными электродами разл. формы, в каналы к-рых помещают исследуемое в-во в измельчённом состоянии, можно производить одновременно определение десятков элементов. Она обеспечивает относительно высокую темп-ру нагрева электродов и благоприятные условия возбуждения атомов пробы в дуговой плазме, однако точность этого метода невысока из-за нестабильности разряда. Повышая напряжение до 300—400 В или переходя к высоковольтной дуге (3—4 кВ), можно увеличить точность анализа.

Более стабильные условия создаёт дуга перем. тока. В совр. генераторах дуги перем. тока можно получать разл. режимы возбуждения (низковольтную дугу, искру, ВЧ искру, дугу перем. тока, импульсный разряд и т. д.). Такие источники света с разл. режимами используют при определении металлов и трудно возбудимых элементов (углерод, галогены, газы, содержащиеся в металлах, и т. д.). Высоковольтная конденсиров. искра служит гл. обр. источником света при анализе металлов. Стабильность искрового разряда позволяет получать высокую воспроизводимость анализа, однако сложные процессы, происходящие на поверхностях электродов, приводят к изменению состава плазмы разряда. Чтобы устранить это явление, производят предварит. обжиг проб, нормируют форму и размеры проб и стандартных образцов.

В эмиссионном АСА перспективно применение стабилизиров. форм электрич. разряда, получаемых в плазмотронах разл. конструкций, ВЧ индукционного разряда, СВЧ разряда, создаваемого магнетронными генераторами, ВЧ факельного разряда. С помощью разл. приемов введения анализируемых в-в в плазму этих разрядов (продувка порошков, распыление р-ров и т. д.) значительно повышена относит. точность анализа (до 0,5—3%), в т. ч. и компонентов сложных проб, содержание к-рых составляет десятки %. В нек-рых важных случаях анализа чистых в-в применение этих типов разряда снижает пределы определения примесей на 1—2 порядка (до 10-5—10-6 %).

Для апализа чистых в-в, радиоактивных материалов, смесей газов, изотопного анализа, спектрально-изотопного определения газов в метал-

708



лах и тв. телах и т. д. весьма перспективно оказалось использование разряда в полом катоде и безэлектродных ВЧ и СВЧ разрядов. В качестве источников возбуждения применяются также лазеры (см. Лазерная спектроскопия).

Атомно-абсорбционный С. а. (ААА) и атомно-флуоресцентный С. а. (АФА). В этих методах пробу также испаряют в атомизаторе (в пламени, графитовой трубке, плазме стабилизированного ВЧ и СВЧ разряда). В ААА свет от источника дискр. излучения, проходя через пар в-ва, ослабляется, и по степени ослабления интенсивностей линий определяемого элемента судят о концентрации его в пробе. ААА проводят на спец. спектрофотометрах; методика его проведения по сравнению с др. методами значительно проще, для него характерна высокая точность определения не только малых, но и больших концентраций элементов в пробах.

В АФА ат. пары пробы облучают резонансным для исследуемого элемента излучением и регистрируют его флуоресценцию. Для нек-рых элементов (Zn, Cd, Hg и др.) относит, пределы обнаружения весьма малы (~10-5—10-6 %).

АСА позволяет проводить измерение изотопного состава благодаря изотопному сдвигу спектр. линий (для большинства элементов требуются приборы высокой разрешающей способности, напр. эталон Фабри — Перо). Изотопный С. а. можно также проводить по электронно-колебательным спектрам молекул, определяя изотопные сдвиги полос, достигающие в некоторых случаях значительной величины.

Экспрессные методы АСА широко применяются в пром-сти, с. х-ве, геологии и мн. др. областях нар. х-ва и науки. Значит. роль АСА играет в ат. технике, произ-ве чистых ПП материалов, сверхпроводников и т. д.

К С. а. относится также анализ элементного состава в-ва по рентг. спектрам (см. Спектральный анализ рентгеновский), по спектрам ожеи фотоэлектронов (см. Оже-спектроскопия и Фотоэлектронная спектроскопия), по спектрам фотопроводимости и др.

•Зайдель А. Н., Основы спектрального анализа, М., 1965; Русанов А. К., Основы количественного спектрального анализа руд и минералов, 2 изд., М., 1978; Спектральный анализ чистых веществ, под ред. X. И. Зильберштейна, Л., 1971; Львов Б. В., Атомно-абсорбционный спектральный анализ, М., 1966; Петров А. А., Спектрально-изотопный метод исследования материалов, Л., 1974; Тарасевич Н. И., Семененко К. А., Хлыстова А. Д., Методы спектрального и химико-спектрального анализа, М., 1973; Менке Г., Менке Л., Введение в лазерный эмиссионный микроспектральный анализ, пер. с нем., М., 1968; Королев Н. В., Р ю х и н В. В., Г о р б у н о в С. А., Эмиссионный спектральный микроанализ, Л., 1971; Таблицы спектральных линий, 4 изд., М., 1977.

Л. В. Липис.

Молекулярный спектральный анализ (МСА)

В основе МСА лежит качеств. и количеств. сравнение измеренного спектра исследуемого образца со спектрами индивидуальных веществ. Соответственно различают качеств. и количеств. МСА. В МСА используют разл. виды молекулярных спектров: вращательные (микроволновая и длинноволновая ИК области спектра), колебательные и колебательно-вращательные [спектры поглощения и излучения в ср. ИК области, спектры комбинационного рассеяния света (КРС), спектры ИК флуоресценции], электронные, электронно-колебательные и электронно-колебательно-вращательные (спектры поглощения и пропускания в видимой и УФ областях, спектры флуоресценции). МСА позволяет проводить анализ малых количеств в-ва (до долей мкг и менее) в разл. агрегатных состояниях.

Осн. факторы, определяющие возможности методов МСА: 1) информативность метода. Условно выражается числом спектрально разрешаемых линий или полос в определ. интервале длин волн или частот исследуемого диапазона (для микроволн. диапазона оно ~105, для ср. ИК области ~103);

2) кол-во измеренных спектров индивидуальных соединении;

3) существование общих закономерностей между спектром в-ва и его мол. строением;

4) чувствительность и избирательность метода;

5) универсальность метода;

6) простота и доступность измерений спектров.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):